
Things You Can Do With
Standard Controls: The ListBox
by Brian Long

In the rush to develop new com-
ponents here there and every-

where, sometimes it’s easy to
forget that the standard controls
included with Delphi are really
quite powerful. This month, I’ll take
a look at what we can do with the
humble TListBox. Note that all of
this is applicable to both Delphi 1
and 2.

Displaying Non-Textual Items
To display things other than
strings requires us to use the
owner-draw facilities of a listbox.
Many Windows controls offer
owner-draw facilities, but not all
have them surfaced by their re-
spective Delphi VCL components.
The term owner-draw basically
means that you as the developer
take over the responsibility of sup-
plying code to do the drawing of
the control, but we will look at this
in more detail in my next article on
this topic.

Listboxes, combo boxes, but-
tons and menus support owner
drawing inherently in Windows,
but only TListBox and TComboBox
components make it easy for us to
take advantage of it. Other Delphi
components which have no direct
Windows control equivalent but of-
fer support for developer supplied
drawing code in a quite similar way
include TStringGrid, TDrawGrid,
TDBGrid and TOutline.

Information about owner-draw
listboxes is fairly easy to obtain.
The first three Delphi books I
picked off my shelf cover the sub-
ject, although the next two didn’t.
The ones that do are Instant Delphi
Programing by Dave Jewell, Delphi
Programming Problem Solver by
Neil Rubenking and Delphi Devel-
oper’s Guide by Steve Teixeira and
Xavier Pacheco. I won’t mention
the ones that didn’t as they might
actually discuss the subject, but
not list it obviously in the index.

To lay down the law, the rules for
custom listbox drawing involve
setting the Style property to either
lbOwnerDrawFixed (for listbox items
that will be all the same height, as
in a normal listbox) or lbOwner-
DrawVariable (for variable height
items). Two other properties that
come into play when Style is set to
lbOwnerDrawFixed are ItemHeight
and IntegralHeight. If each item is
to be of a fixed size, ItemHeight
specifies how high each one will be.
If IntegralHeight is True, the listbox
alters its own height to ensure that
no item is only partially visible, oth-
erwise the height remains as speci-
fied by the Height property and
some of the last entry may be seen.

The drawing code goes in the
OnDrawItem event handler in either
case. If the lbOwnerDrawVariable
style was chosen then the OnMeas-
ureItem event handler must also be
used to identify the height of each
item that needs to be drawn.

Let’s see a couple of examples
that draw a bitmap and some text
in each listbox item. The example
program CUSTOM.DPR on this
month’s disk has two owner drawn
listboxes and an owner drawn
combobox is thrown in for good

measure. The program allows you
to choose a directory and press a
button (or the Enter key) to load all
the bitmaps in that directory into a
TStringList called Bmps. The names
are added and the bitmaps are
loaded as objects using the AddOb-
ject method (see Listing 1 for the
routine that gets called to do this).
This TStringList is assigned to the
Items properties of the compo-
nents in question. The properties
of the fixed height listbox
(LstFixed) are shown in Listing 2
and Listing 3 has the listbox’s
OnDrawItem event handler.

Notice that one of the first opera-
tions ensures that the entirety of
the item gets covered in the event
handler. This ensures that no rub-
bish is left over from previous

object LstFixed: TListBox
 Left = 0
 Top = 32
 Width = 305
 Height = 186
 IntegralHeight = True
 ItemHeight = 13
 Sorted = True
 Style = lbOwnerDrawFixed
 TabOrder = 3
 OnDrawItem = LstFixedDrawItem
end

➤ Listing 2

procedure LoadBitmaps(const Path: String; S: TStrings);
var
 Bmp: TBitmap;
 SearchRec: TSearchRec;
begin
 EmptyBmpList(S);
 with S do begin
 BeginUpdate;
 if FindFirst(Path + ’*.bmp’, faAnyFile, SearchRec) = 0 then
 try
 repeat
 Bmp := TBitmap.Create;
 Bmp.LoadFromFile(Path + SearchRec.Name);
 AddObject(SearchRec.Name, Bmp);
 until FindNext(SearchRec) <> 0;
 finally
 FindClose(SearchRec);
 end;
 EndUpdate;
 end;
end;

➤ Listing 1

38 The Delphi Magazine Issue 20

items and is achieved by calling the
FillRect method of the listbox’s
Canvas. This gets followed by a call
to the canvas’s StretchDraw
method to draw an appropriately
proportioned version of the bit-
map into the specified area of the
listbox. The Rect parameter of the
event handler gives the dimen-
sions of the area, whose the height
is dictated by the ItemHeight
property of the listbox.

The State parameter is a set that
may contain any of the following
values:
➣ odSelected means that the item

has been selected: it would typi-
cally have the background
displaying in blue.

➣ odDisabled implies that the list-
box’s Enabled property is False.

➣ odFocused suggests that there
should be a focus rectangle
around the item.

The event handler in Listing 3
checks to see if the item is selected,
and if so inverts the bitmap image.
It then writes the filename just to
the right of the bitmap, using a sim-
ple formula to ensure the text is
vertically centred. The result can
be see in the two listboxes shown
in Figure 1. The only difference be-
tween these listboxes is that the
one on the right has an ItemHeight
property value twice as large as the
other. This results in the pictures
being scaled to twice the size.

The combobox in Figure 1 is a
fixed height owner drawn control
and uses exactly the same logic to
draw its contents. Another project
called CUSTOM2.DPR is included
on the disk. This features a variable
height owner drawn listbox (and a
combobox again). Figure 2 shows
the program running and Listing 4
shows the listbox’s properties.
You can see that as well as an
OnDrawItem event handler,we have
an OnMeasureItem handler. Listing 5
shows what these look like.

The evident differences in the
code here include a distinct lack of
bitmap stretching. The idea is for
the bitmaps to be displayed in their
correct size. Additionally, the file-
name is not written in this project,
to simplify the code.

The OnMeasureItem handler sim-
ply identifies the height of the ap-
propriate bitmap that needs
displaying (as specified in the Index
parameter) and returns it in the
Height parameter.

Incidentally, the differently sized
bitmaps shown in the figures are
aldo supplied on the disk.

Supporting Tab Characters
When you want to align columns of
information in a listbox, some peo-
ple will tell you to use a TListView

function ScaleBmpToItemSize(const R: TRect; Bmp: TBitmap): TRect;
begin
 Result := R;
 with Result, Bmp do
 Right := Trunc(Left + (Bottom - Top) * Width / Height)
end;

procedure TForm1.LstFixedDrawItem(Control: TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
var BmpRect, TextRect: TRect;
begin
 with (Control as TListBox), Items, Canvas, Rect do begin
 { Since we are only drawing over part of the item, make sure we
 blank out any old garbage with a foreground rectangle }
 FillRect(Rect);
 { Draw the bitmap, scaled to fit in the fixed height item }
 BmpRect := ScaleBmpToItemSize(Rect, TBitmap(Objects[Index]));
 StretchDraw(BmpRect, TBitmap(Objects[Index]));
 { Invert the item colours if it is selected }
 if odSelected in State then
 InvertRect(Handle, BmpRect);
 { Write the filename after the bitmap, vertically centred }
 with BmpRect do
 TextOut(Right + 4, (Top + Bottom + Font.Height - 1) div 2,
 Items[Index]);
 end
end;

➤ Listing 3

➤ Figure 2

➤ Figure 1

object LstVariable: TListBox
 Left = 3
 Top = 66
 Width = 318
 Height = 187
 Sorted = True
 Style = lbOwnerDrawVariable
 TabOrder = 3
 OnDrawItem = LstVariableDrawItem
 OnMeasureItem = LstVariableMeasureItem
end

➤ Listing 4

April 1997 The Delphi Magazine 39

component in Delphi 2. If you are
writing code that is portable be-
tween 16-bit and 32-bit this is not
an option. How do we do this with
a standard TListBox? One way
would be to use a monospaced, or
fixed pitch, font and use a calcu-
lated number of spaces to align the
secondary columns.

Apart from being tedious, this
would look rotten. Antiquated ver-
sions of Windows forced us to use
non-proportional fonts and it was a
joy to behold when this restriction
was removed. A better solution
would be to employ the tab stop
support that Windows listboxes al-
ready have. However, if you insert
a tab character into a listbox data
item, it gets drawn as an unsightly
black blob (see Figure 3). Unfortu-
nately the TListBox component
does not surface this tab support
and so a new TListBox derivative is
called for: TTabListBox, as imple-
mented in LBOXTAB.PAS on this
month’s disk.

In the component there is a pri-
vate data field, FTabStopSupport, to
store whether or not tab character
support has been enabled (it de-
faults to False to act like a normal
TListBox). This field is surfaced
through the TabStopSupport prop-
erty (not to be confused with the
TabStop property, common to all
windowed controls).

There is a potential showstopper
of a problem with this tab stop sup-
port business in that to enable it,
the listbox control (ie the Windows
interface element, rather than the
TTabListBox object that represents
it) must have been created at the
API level with a certain listbox style
flag (lbs_UseTabStops). Conversely,
to disable it, the listbox must be
created without this flag. This im-
plies that to toggle the tab stop
support we will need to destroy
and then re-create the listbox
Windows interface element on an
as-needed basis. But if we do that,
what happens to all the data in the
listbox?

Fortunately we have no need to
worry as it has all been taken care
of by those nice people at Borland.
Consider for a moment the Bor-
derIcons property of a form, which
allows you to remove the minimise

and maximise buttons and the sys-
tem menu at any arbitrary point.
This again relies on the form
window being destroyed and re-
created with the new attributes,
but all the controls on the form
appear to remain intact when the
property gets modified at run-time.

All TWinControl-derived controls
have a method called RecreateWnd
that will destroy and recreate the
Windows interface element, pre-
serving the data as it goes.
RecreateWnd calls (indirectly)
DestroyWnd and then CreateWnd,
both of which are virtual routines.
CreateWnd itself calls the virtual
CreateParams routine to find the
flags, styles and attributes to pass
over to Windows in order to get the
window created correctly.

You can override CreateParams in
order to choose appropriate styles
to be used when the Windows in-
terface element gets created. You
can also override CreateWnd and
DestroyWnd to save/restore any spe-
cial data over and above what will
be saved for you. By default, the
TWinControl functionality simply
saves the control’s caption/text in
the DestroyWnd virtual method and
restores it when needed in the
CreateParams method. The TListBox
(or, to be correct, its ancestor

TCustomListBox) class saves the
data contained within the listbox
using a TStringList in DestroyWnd
and restores it all in CreateWnd.

To get our new class working, we
need to override CreateParams and
set the appropriate window style
as suggested by the TabStopSupport
property. When the property gets
changed, we call RecreateWnd.
These bits of code can be sen in
Listing 6. When the TabStopSupport
property is True, the listbox will
interpret ASCII character 9, repre-
sented in Delphi either as Chr(9) or
#9, as a tab stop character.

Tab Stop Metrics
By default, the listbox has tab
stops every 32 horizontal dialog
box units, where there are four
horizontal dialog box units to
every current dialog box base-
width unit. The number of pixels
that make up one dialog box base-
width unit can be found by using
LoWord(GetDialogBaseUnits): the
value used is based on the System
font, and is supposed to represent
approximately one character posi-
tion (bearing in mind a propor-
tional font is probably being used
in the dialog). So the default tab
stops are set to an approximation
of every eight characters.

procedure TForm1.LstVariableMeasureItem(Control: TWinControl;
 Index: Integer; var Height: Integer);
begin
 if Index >= 0 then with Bmps do
 if Assigned(Objects[Index]) then
 Height := TBitmap(Objects[Index]).Height;
end;

procedure TForm1.LstVariableDrawItem(Control: TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
var Bmp: TBitmap;
begin
 with LstVariable, Items, Canvas, Rect do begin
 FillRect(Rect);
 Bmp := TBitmap(Objects[Index]);
 Draw(Left, Top, Bmp);
 if odSelected in State then
 InvertRect(Handle, Bounds(Left, Top, Bmp.Width, Bmp.Height))
 end
end;

➤ Listing 5

➤ Figure 3

40 The Delphi Magazine Issue 20

To set up custom tab stops,
there is a method in TTabListBox
called SetTabStops (Listing 6 again).
This takes an open array of inte-
gers and sends the passed in
values to the listbox as parameters
of a lb_SetTabStops message. The
specified message takes the ad-
dress of an array of integers, so the
@ operator helps out here. The tab
stops must be sorted in ascending
order: back-tabs are not allowed.
After custom tab stops are set up,
the listbox must be redrawn to
have its current visible entries
reflect the new settings.

One point to note is that these
tab stops can only be set if tab stop
support is currently enabled. If
they are successfully set and then
TabStopSupport is set to False, they
are abandoned and forgotten. An
exercise for you, gentle reader,
is to employ DestroyWnd and
CreateWnd to remember them if
TabStops is set back to True, possi-
bly using a fixed size integer array
data field.

There are two projects on the
disk which use this component.
LBOXTABS.DPR creates one on the
fly, so that you do not have to add
the component to your component
palette, whereas LBOXTBS2.DPR
relies on the component having
been installed. Listing 7 shows how
to pass in an open array of integers
to a call to the TabListBox’s SetTab-
Stops method, as done in the but-
ton’s OnClick event handler in
LBOXTBS2.DPR (see Figure 4).

Adding A Horizontal Scrollbar
Even though TListBox components
are created with the ws_HScroll
window style, if the text in the list-
box goes past the right hand bor-
der, no horizontal scrollbar
appears. Normally scrollbars ap-
pear in listboxes only if you have
multiple columns of entries (see
the Columns property).

To get a scrollbar for a one col-
umn listbox we need to send it a
lb_SetHorizontalExtent message.
The horizontal extent of a listbox
defaults to 0, but you can set it to a
higher value. If the width of the
listbox is less than the horizontal
extent, a scrollbar is shown,
otherwise it is hidden.

➤ Figure 4

procedure TForm1.Button1Click(Sender: TObject);
begin
 { Set some arbitrary tab stops. Note the multiplication by four to turn
 the approximate character positions into horizontal dialog box units.
 The default tab stops are every 8 * 4 }
 if not TabListbox1.SetTabStops([8 * 4, 12 * 4, 24 * 4, 40 * 4]) then
 ShowMessage(’Can’’t set tab stops’)
end;

➤ Listing 7

unit LBoxTab;
interface
uses
 StdCtrls, Controls, Classes;
type
 TTabListbox = class(TListbox)
 private
 FTabStopSupport: Boolean;
 FScrollWidth: Word;
 protected
 procedure CreateParams(var Params: TCreateParams); override;
 procedure SetTabStopSupport(Value: Boolean);
 public
 function SetTabStops(Tabs: array of Integer): Boolean;
 published
 property TabStopSupport: Boolean
 read FTabStopSupport write SetTabStopSupport default False;
 { Note this property has been given a default of False but that value
 is not being assigned to FTabStopSupport since it will get that value
 anyway. All class data fields are initialised with zero memory byte
 values }
 end;
procedure Register;

implementation
uses
 WinTypes, Messages;

procedure TTabListbox.CreateParams(var Params: TCreateParams);
const
 TabStopSupport: array[Boolean] of Longint = (0, lbs_UseTabStops);
begin
 inherited CreateParams(Params);
 Params.Style := Params.Style or TabStopSupport[FTabStopSupport];
end;

procedure TTabListbox.SetTabStopSupport(Value: Boolean);
begin
 if Value <> FTabStopSupport then begin
 FTabStopSupport := Value;
 RecreateWnd;
 end;
end;

function TTabListbox.SetTabStops(Tabs: array of Integer): Boolean;
begin
 Result := Perform(lb_SetTabStops, High(Tabs) - Low(Tabs) + 1,
 Longint(@Tabs)) <> 0;
 if Result then Repaint;
end;

procedure Register;
begin
 RegisterComponents(’Clinic’, [TTabListBox]);
end;

end.

➤ Listing 6

April 1997 The Delphi Magazine 41

➤ Figure 5

Rather than just sending the
message when a particular scroll
width is chosen, we have to be a bit
more wily. We need to also send
the message if the listbox gets
re-created with RecreateWnd as
described earlier. We can do this in
an overridden version of the

CreateWnd method. Note that since
we are in the throes of component
writing, we will send the message
to the listbox using the Delphi
TControl method Perform, rather
than calling the Windows APIs
SendMessage or PostMessage. A
second version of the tabbed

listbox component, which I’ve
called TTabScrollListbox and is in
LBOXTAB2.PAS, includes code to
do this (see Listing 8 for the appro-
priate snippets). The sample pro-
ject LBOXTBS3.DPR has a spin edit
to allow you to test the list box
horizontal extent (see Figure 5).

Brian Long is a UK-based freelance
Delphi and C++ Builder consultant
and trainer. He is available for
bookings and can be contacted by
email at blong@compuserve.com

Copyright ©1997 Brian Long
All rights reserved

TTabScrollListbox = class(TListbox)
private
 FTabStopSupport: Boolean;
 FScrollWidth: Word;
protected

 procedure CreateWnd; override;
 procedure SetScrollWidth(Val: Word);
 ...
published
 property ScrollWidth: Word read FScrollWidth write SetScrollWidth;
...
procedure TTabScrollListbox.CreateWnd;
begin
 inherited CreateWnd;
 { After reconstructing window, reset scrollbar }
 Perform(lb_SetHorizontalExtent, FScrollWidth, 0);
end;

procedure TTabScrollListbox.SetScrollWidth(Val: Word);
begin
 if Val <> FScrollWidth then begin
 FScrollWidth := Val;
 Perform(lb_SetHorizontalExtent, FScrollWidth, 0);
 end;
end;

➤ Listing 8

42 The Delphi Magazine Issue 20

	Displaying Non-Textual Items
	Supporting Tab Characters
	Tab Stop Metrics
	Adding A Horizontal Scrollbar

